On massive MIMO performance with semi-orthogonal pilot-assisted channel estimation

نویسندگان

  • Hua Zhang
  • Xinru Zheng
  • Wei Xu
  • Xiaohu You
چکیده

With the rapidly increasing demand for high-speed data transmission and a growing number of terminals, massive multiple-input multiple-output (MIMO) has been shown promising to meet the challenges owing to its high spectrum efficiency. Although massive MIMO can efficiently improve the system performance, usage of orthogonal pilots and growing terminals causes large resource consumption especially when the coherence interval is short. This paper proposes a semi-orthogonal pilot design with simultaneous data and pilot transmission. In the proposed technique, we exploit the asymptotic channel orthogonality in massive MIMO systems, with which a successive interference cancellation (SIC)-based channel estimation is applied to mitigate the mutual interference between data and pilot. We derived the theoretical expressions of the achievable rates in massive MIMO systems with our proposed pilot design. Further discussion on performance verifies the superiority of our proposed pilot design for high or low signal-to-noise-ratios (SNRs) with any coherence interval length. And simulation results show that the proposed pilot design can achieve a significant performance improvement with reduced pilot resource consumption compared with the conventional orthogonal pilots.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-Blind Channel Estimation based on subspace modeling for Multi-user Massive MIMO system

‎Channel estimation is an essential task to fully exploit the advantages of the massive MIMO systems‎. ‎In this paper‎, ‎we propose a semi-blind downlink channel estimation method for massive MIMO system‎. ‎We suggest a new modeling for the channel matrix subspace. Based on the low-rankness property, we have prposed an algorithm to estimate the channel matrix subspace. In the next step, using o...

متن کامل

Design of Orthogonal Uplink Pilot Sequences for TDD Massive MIMO under Pilot Contamination

—Massive MIMO has been acknowledged as a promising technology to counter the demand for higher data capacity for wireless networks in 2020 and beyond. However, each Base Station (BS) requires good enough knowledge of Channel State Information (CSI) on both the uplink and the downlink as massive MIMO relies on spatial multiplexing. In Time Division Duplex (TDD) massive MIMO systems, this CSI is...

متن کامل

Channel Estimation in Massive MIMO Systems

We introduce novel blind and semi-blind channel estimation methods for cellular time-division duplexing systems with a large number of antennas at each base station. The methods are based on the maximum a-posteriori principle given a prior for the distribution of the channel vectors and the received signals from the uplink training and data phases. Contrary to the state-of-the-art massive MIMO ...

متن کامل

Novel Semi-blind Channel Estimation Schemes for Rayleigh Flat Fading MIMO Channels

In this paper, we propose two novel semi-blind channel estimation techniques based on QR decomposition for Rayleigh flat fading Multiple Input Multiple output (MIMO) channel using various pilot symbols. In the first technique, the flat-fading MIMO channel matrix H can be decomposed as an upper triangular matrix R and a unitary rotation matrix Q as H = RQ. The matrix R is estimated blindly from ...

متن کامل

Signal-Perturbation-Free Semi-Blind Channel Estimation for MIMO-OFDM Systems

Signal-Perturbation-Free Semi-Blind Channel Estimation forMIMO-OFDM Systems Feng Wan, Ph.D.Concordia University, 2009 Multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) has been considered as a strong candidate for the beyond 3G (B3G) wirelesscommunication systems, due to its high data-rate wireless transmission performance.It is well known...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EURASIP J. Wireless Comm. and Networking

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014